
ПЕРСПЕКТИВНЫЕ ТЕХНОЛОГИИ БЕСПРОВОДНОГО ШИРОКОПОЛОСНОГО ДОСТУПА И РАЗВИТИЕ ИНФОКОММУНИКАЦИЙ

Андрей Иванович Скородумов

Содержание

- 1. Современный этап развития инфокоммуникаций
- Перспективные технологии беспроводного широкополосного доступа и их взаимодополняющее развитие
- 3. Повышение эффективности использования радиочастотного спектра основное направление дальнейшего развития сетей связи нового поколения
- 4. Актуальные вопросы государственной политики и основные задачи в области развития инфокоммуникаций

Этапы роста инфокоммуникационной индустрии

СОВРЕМЕННЫЙ ЭТАП РАЗВИТИЯ РЫНКА (01.01.11)

	СЕТИ	СТРАНЫ	АБОНЕНТЫ	ТЕРМИНАЛЫ
LTE	2	2	?	>10
WCDMA/UMTS	383	135	529 млн.	>2 000
HSDPA/HSUPA/HSPA+	380/168/103	155/50/57	209 млн.	1 850/450
1x EV-DO Rev.0 + Rev.A	115 + 84	61 + 45	142 млн.	552 + 227
CDMA2000 1x	311	117	506 млн.	>2 000
WiMAX	559	147	622 млн.	191

Абоненты сотовой связи (~ 5 млрд. чел.)

GSM / UMTS / HSPA 90%

(862 млн.чел.) **UMTS/HSPA** 1xEV-DO 16%

Абоненты сетей 3G

Другие стандарты 10%

Источники: umts-forum.org, cdg.org, gsacom.com, gsmworld.com, wimaxforum.org

84%

Конвергенция технологий и услуг – переход к All-IP

СОТОВЫЙ ТЕЛЕФОН – ПЕРСОНАЛЬНЫЙ КОММУНИКАТОР

Мобильная коммерция

- Электронная торговля
- Банковские и биржевые операции
- Аукционы
- Заказ билетов

Информационные услуги

- Доступ в Интернет
- Электронное правительство
- Мобильное (интерактивное) TV
- Позиционирование (LBS)
- Справки
- Дистанционное обучение

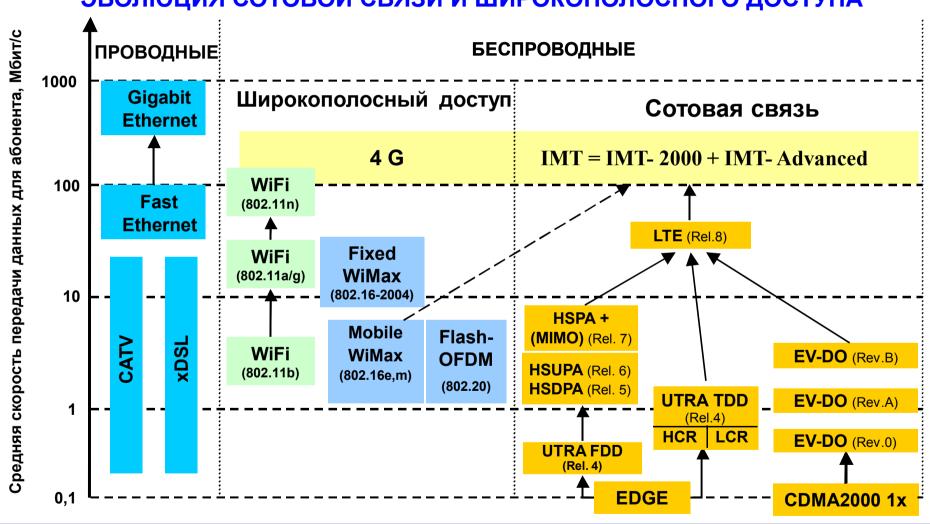
Общение

- Голос
- SMS
- MMS
- Видеоконференции

Развлечения

- Видео и фото, музыка
- Мобильное (интерактивное) TV
- Игры, знакомства
- Мелодии и картинки

Приложения


- Дистанционное управление
- Телеметрия
- Службы спасения
- Телемедицина

Мобильный офис

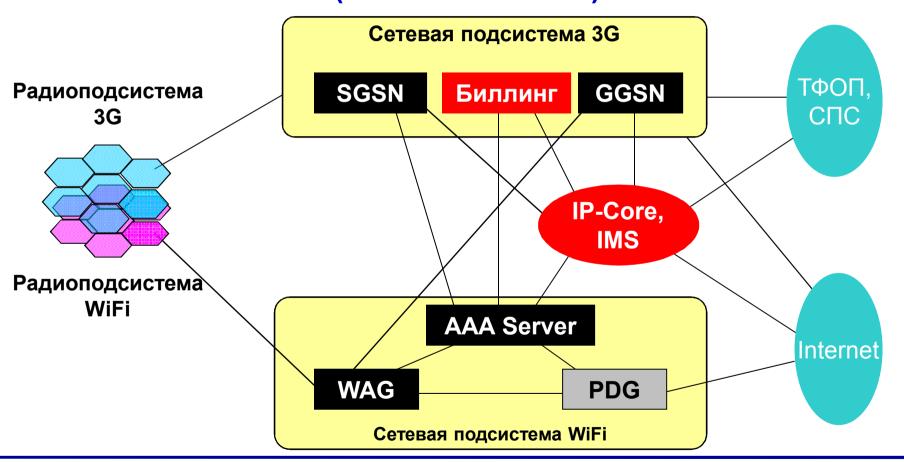
- Доступ к корпоративным сетям
- Электронная почта
- Органайзер

московский авиационный институт

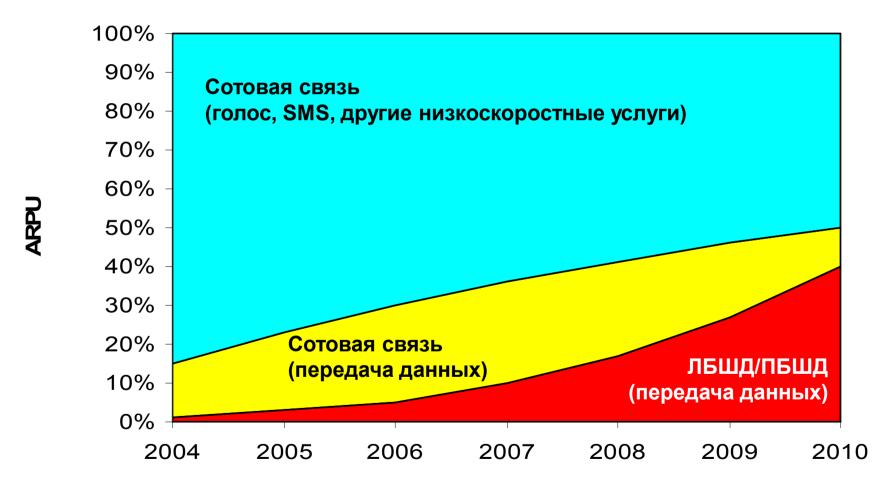
ЭВОЛЮЦИЯ СОТОВОЙ СВЯЗИ И ШИРОКОПОЛОСНОГО ДОСТУПА

Преимущества сетей сотовой связи и БШД

Сотовая связь

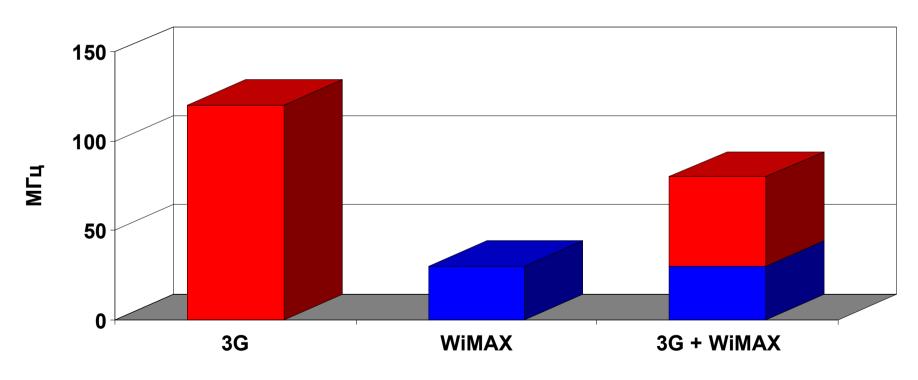

- Мобильность
- > Сетевая инфраструктура
- Большая абонентская база
- Информационная безопасность, аутентификация
- Межсетевое взаимодействие, роумин
 - Тарификация

БШД

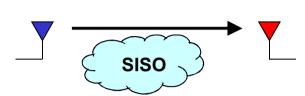

- Низкая стоимость оборудования
 - Низкая себестоимость передачи данных
 - Высокие скорости передачи данных
- Возможно использование нелицензируемых полос радиочастот

Повышение доходов операторов и качества обслуживания абонентов

Архитектура взаимодополняющих сетей 3G и БШД (UMTS Release 6)



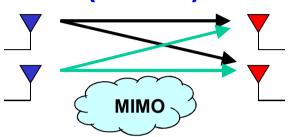
Прогноз изменения структуры ARPU



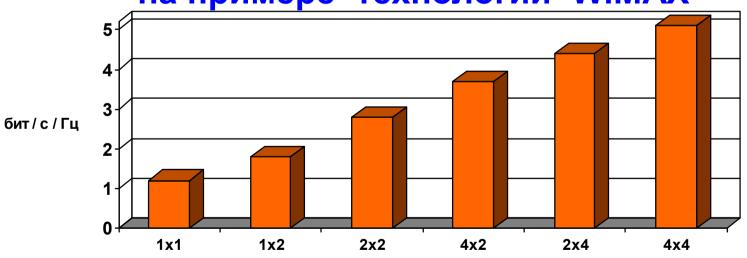
Необходимый радиочастотный ресурс для взаимодополняющих сетей 3G и БШД

 $3G(120 M\Gamma \mu) + WiMAX(30 M\Gamma \mu) = 3G/WiMAX(80 MГ \mu)$

Многоканальные антенные системы (МІМО)



✓ Эффективная передача данных в условиях многолучевого распространения сигнала


✓ Борьба с замираниями

✓ Повышение спектральной эффективности

✓ MIMO – универсальная платформа для многих технологий

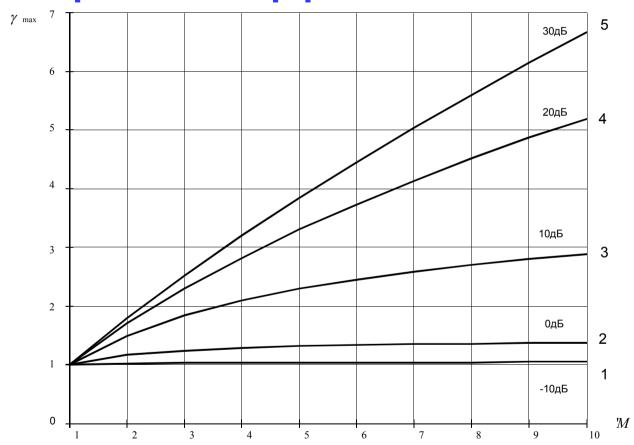
Повышение спектральной эффективности на примере технологии WiMAX

(число антенн передатчика) Х (число антенн приемника)

Источник: Nortel

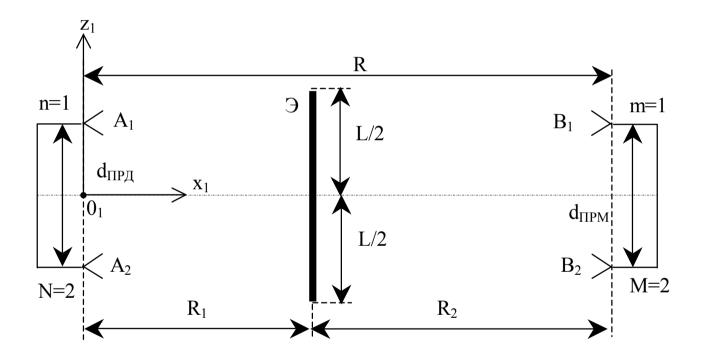
Спектральная эффективность ССС - МІМО при организации М' независимых каналов

$$C_{\max}^{M'} = C_{\max}^{MIMO} = \sum_{m=1}^{M'} \log_2 \left(\frac{\left| \mu_m \right|^2}{M'} \sum_{k=1}^{M'} \frac{1}{\left| \mu_k \right|^2} + \rho \frac{\left| \mu_m \right|^2}{M'} \right)$$

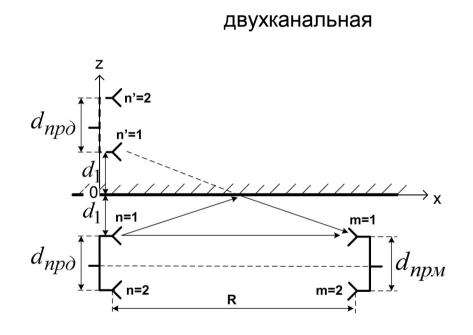

Потенциальная спектральная эффективность ССС - МІМО

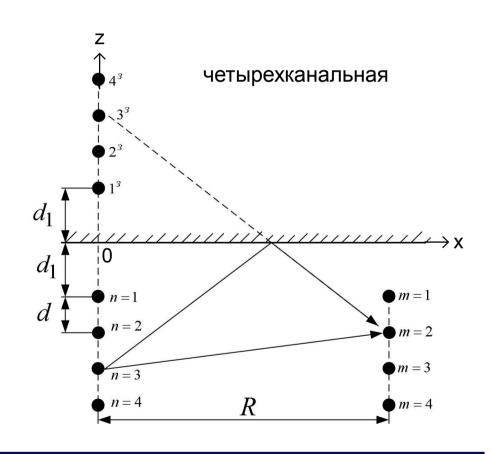
$$\max\left(C_{\max}^{M'}
ight) = C_{\max\max}^{M'} = M'\log_2\!\left(1 +
ho rac{\left|\mu_1
ight|^2}{M'}
ight)$$
 , при $\left|\mu_m
ight| = \left|\mu_1
ight|, \, m = 1 \dots M'$

Потенциальная спектральная эффективность при организации М' каналов с равными собственными значениями


$$\gamma_{\text{max}} = \frac{C_{\text{max max}}^{M'}}{C_{\text{max max}}^{1}} = \frac{M' \log_{2} \left(1 + \rho \frac{\left|\mu_{1}\right|^{2}}{M'}\right)}{\log_{2} \left(1 + \rho \left|\mu_{1}\right|^{2}\right)}$$

Спектральная эффективность ССС - МІМО


Зависимость наибольшего выигрыша в СЭ от числа каналов при различном отношении сигнал/шум


Дифракционная модель ССС - МІМО

московский авиационный институт

Переотражающая модель ССС - МІМО

Антенная система ССС - МІМО

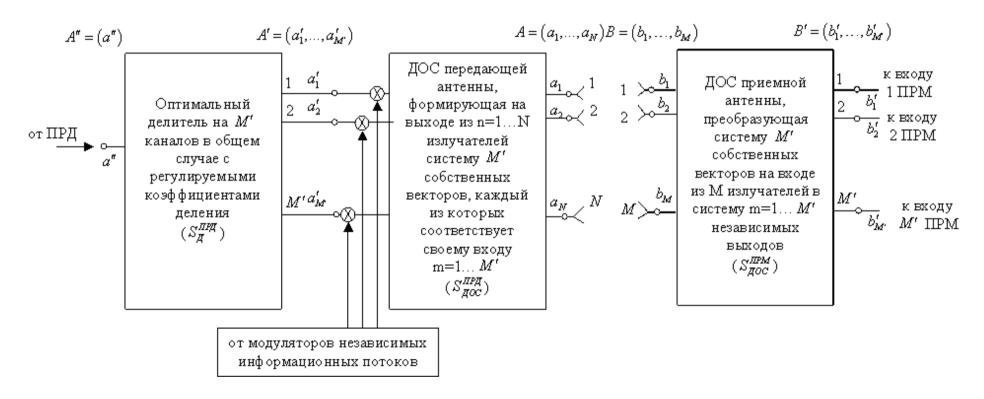
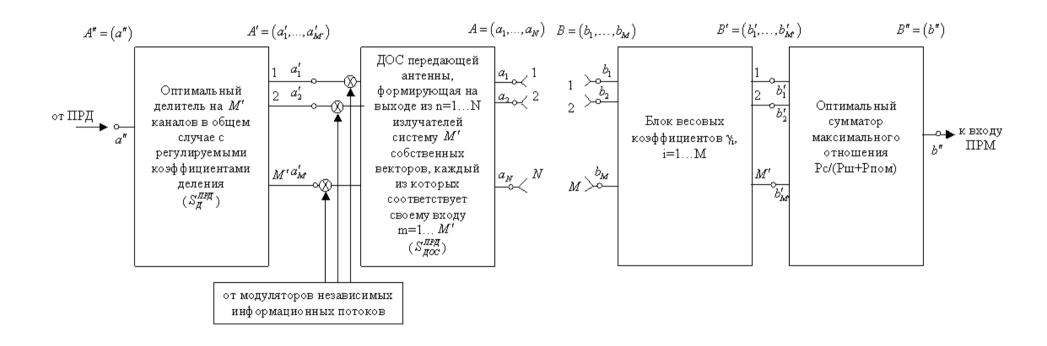
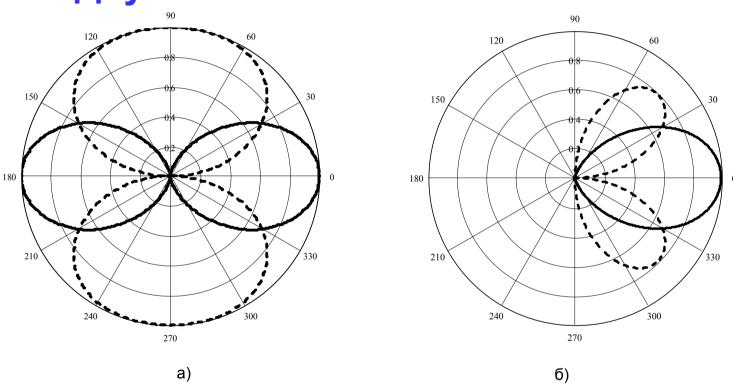
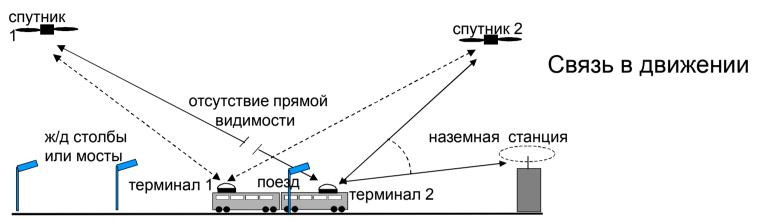


Схема антенной системы ССС - МІМО для примерно равных собственных значений каналов

Антенная система ССС - МІМО

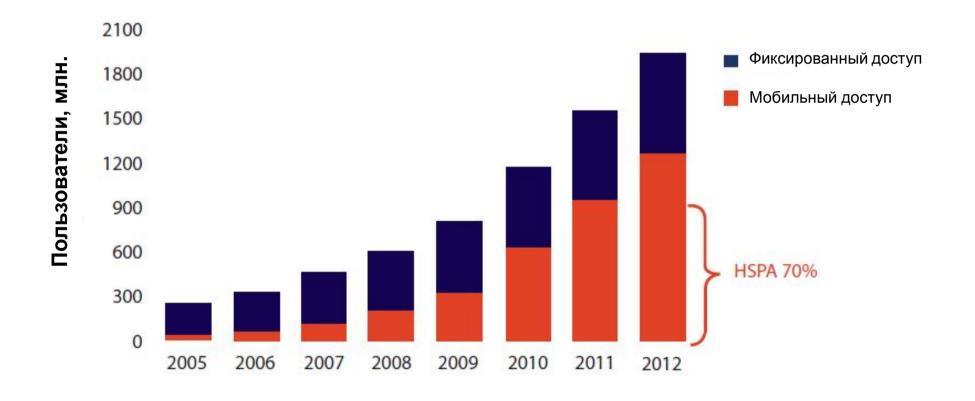




Схема антенной системы ССС - МІМО с преобладанием собственного значения одного из каналов

Двухканальная система MIMO

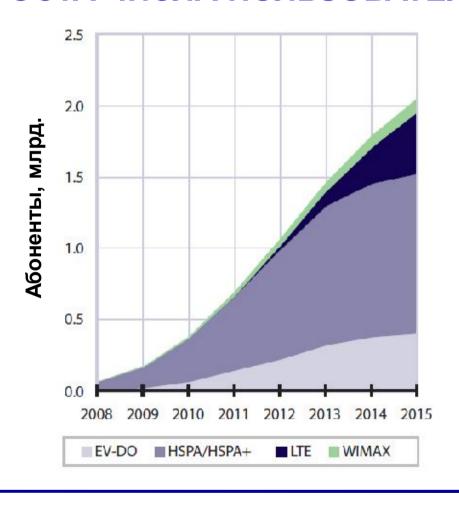
Собственные ДН для синфазного (сплошная) и противофазного (пунктир) каналов для двух полуволновых вибраторов без экрана (а) и с боковым экраном (б).

московский авиационный институт

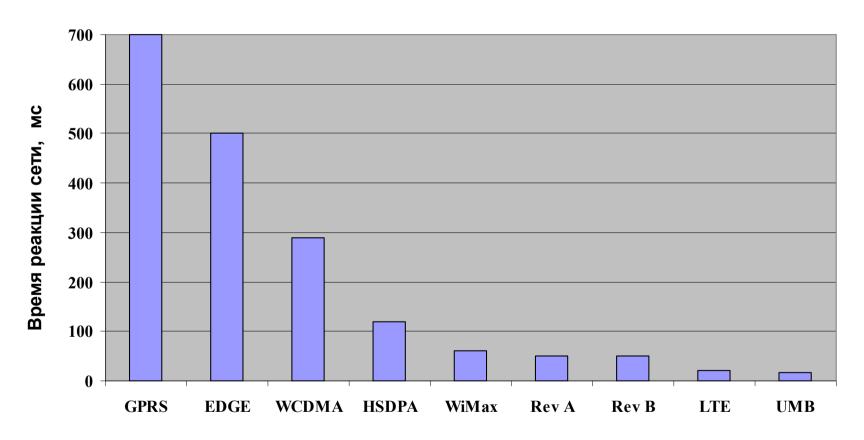


Антенна базовой станции сотовой связи на основе двухслойной сферической линзы

ОПЕРЕЖАЮЩИЙ РОСТ ТРАФИКА ПЕРЕДАЧИ ДАННЫХ

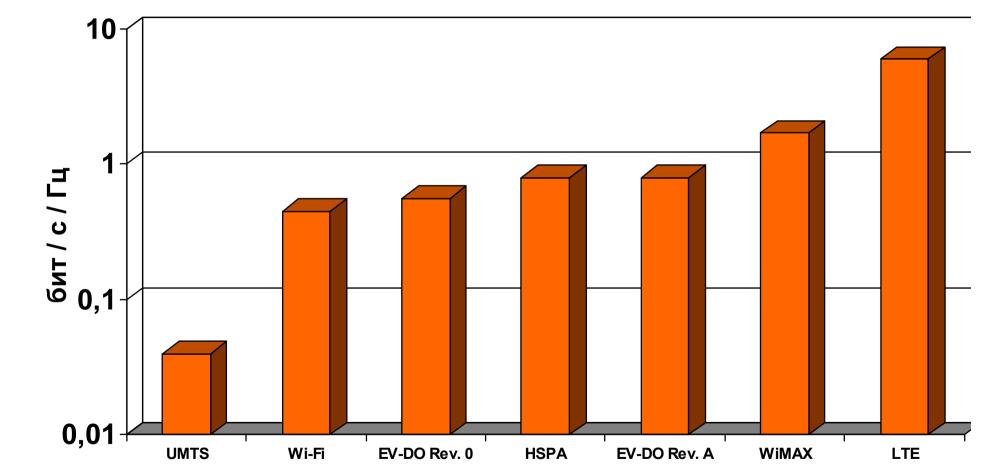


РОСТ ЧИСЛА ПОЛЬЗОВАТЕЛЕЙ ВЫСОКОСКОРОСТНЫМИ УСЛУГАМИ ПЕРЕДАЧИ ДАННЫХ (ПРОГНОЗ)

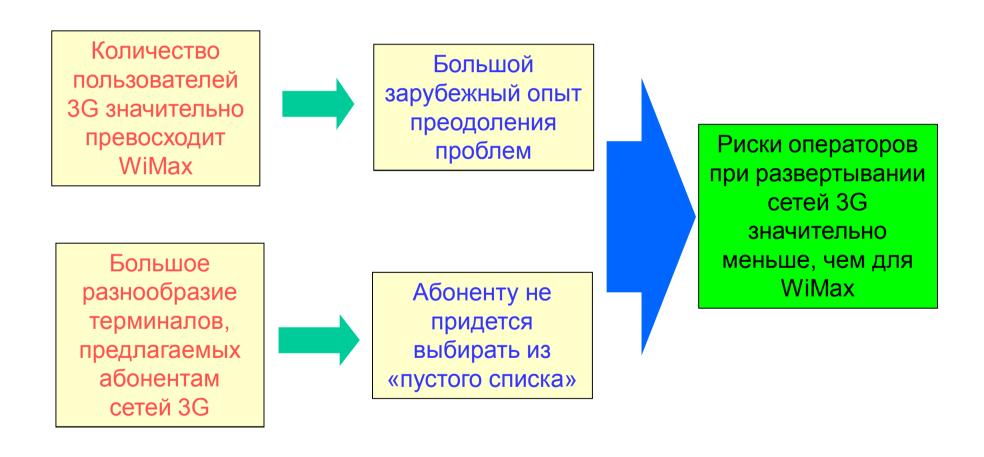


московский авиационный институт

ПРОГНОЗ РОСТА ЧИСЛА ПОЛЬЗОВАТЕЛЕЙ МВВ В МИРЕ

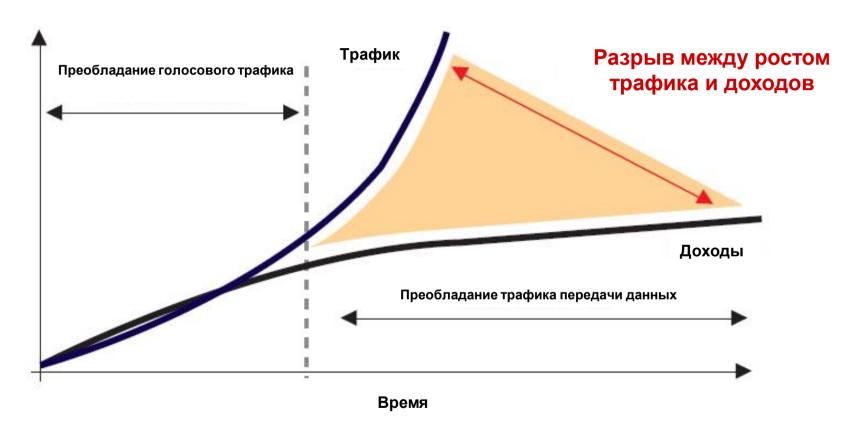


Время реакции сети для различных технологий



московский авиационный институт

Спектральная эффективность



Риски операторов при развертывании сетей

московский авиационный институт

ЛАВИНООБРАЗНЫЙ РОСТ ТРАФИКА ПЕРЕДАЧИ ДАННЫХ

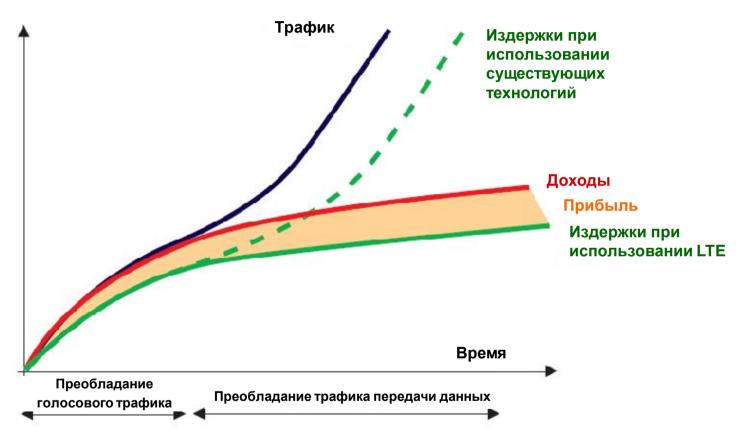
Источник: Unstrung

ПРЕИМУЩЕСТВА ТЕХНОЛОГИИ LTE/SAE

ТЕХНИЧЕСКИЕ:

- ✓ Повышение эффективности использования РЧС, пропускной способности, емкости
- ✓ Снижение времени загрузки информации и времени реакции сети (200,100 и 20 ms),
- ✓ Полностью IP сеть, гибкость в использовании РЧС (1.4,1.6,3,3.2,5,10,15 и 20 МГц)

ЭКОНОМИЧЕСКИЕ:


- ✓ Снижение себестоимости передачи данных,
- ✓ Возможность использования простых и понятных тарифных планов
- ✓ Снижение операционных и капитальных затрат

ФУНКЦИОНАЛЬНЫЕ:

- ✓ Предоставление мультимедийных услуг в реальном режиме времени (доступ в высокоскоростные сети, VoIP, видеоконференции), плоская архитектура
- ✓ Возможность переноса в сети мобильной связи практически любых сервисов, используемых в сетях фиксированной связи, конвергенция технологий (IMS)

Внедрение LTE/SAE - движущий фактор ускоренного развития мобильного широкополосного доступа (эра MBB) – 55 (19+36) операторов, 28 стран

СНИЖЕНИЕ ИЗДЕРЖЕК ПРИ ИСПОЛЬЗОВАНИИ ТЕХНОЛОГИИ LTE

Источник: Nokia Siemens Networks

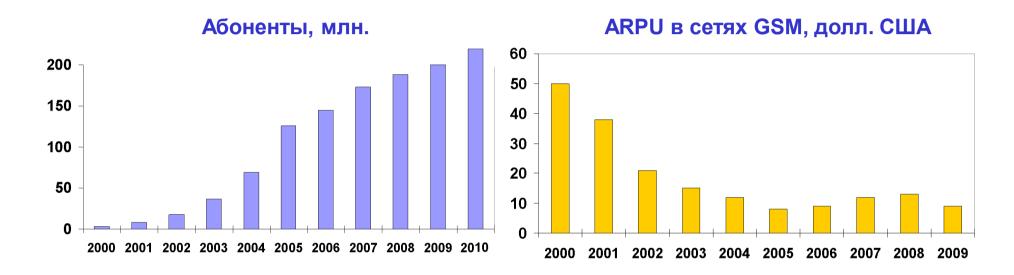
«MOBILE BROADBAND» : необходимо и возможно !!!

- Рост спроса на услуги передачи данных, рост трафика, требования к качеству
- Новые услуги, проникновение Интернета, контент, многомодовые терминалы
- Дальнейшее вовлечение населения в мировое информационное пространство
- Ограниченность ресурсов существующих сетей, снижение ARPU
- Возможность фрагментарного и взаимодополняющего построения новых сетей
- Повышение экономической, функциональной и спектральной эффективности использования РЧС

ВСЕМИРНАЯ КОНФЕРЕНЦИЯ РАДИОСВЯЗИ ВКР-2007/2012

- IMT = IMT-2000 + IMT-Advanced (LTE-Advanced, IEEE 802.16m)
- Перераспределение трафика в пользу сетей 3G (Япония, Корея, США, Австралия,...)
- Рост трафика ПД, потребности в РЧС для развития IMT: всего ~1300 МГц к 2015 году
- Ранее для IMT(2000,2004) было выделено ~ 400 МГц: 900(7)/1800/2100/2500...2690 МГц
- ▶ На основе прогнозируемого роста трафика для ІМТ на глобальной основе выделено еще 136 МГц: 450 - 470 МГц; 790 - 806 МГц; 806 - 862 МГц; 2.3 - 2.4 ГГц; 3.4 - 3.6 ГГц
- Мобильный широкополосный доступ (МВВ): IEEE 802.16e,m; UMTS (LTE) 900/1800/700 МГц
- Эффективность использования РЧС, цифровой дивиденд (2008-2012,100 МГц), рефарминг
- ▶ Аукционы: США (700 МГц),Норвегия, Финляндия, Швеция (2,6 ГГц), Google, Intel, Qualcomm
- Технологическая нейтральность, гибкое использование радиочастот, предложения в ГКРЧ

ВСЕМИРНЫЙ КОНГРЕСС «MOBILE WORLD - 2010»


15-18 февраля 2010 года

- Информация (контент), передаваемая по сети, имеет большую ценность, чем доступ к самой сети.
- ★ На пути от UMTS/HSPA к LTE-SAE и далее IMT! EV-DO,WiMAX,Wi-Fi-?
- ☀ Новые полосы РЧС для IMT: цифровой дивиденд (100 МГц), UMTS 900
- Широкие возможности для предоставления новых услуг и сервисов, учет региональных особенностей, рост трафика передачи данных
- Новые возможности терминалов, просты и удобны в использовании, качество обслуживания, привлекательные цены и понятные тарифы
- Абоненту важно получить услуги с требуемым качеством по минимальной цене и ему все равно, какая технология используется
- Сотрудничество и конкуренция (coopetition) разных участников рынка, совершенствование государственного регулирования
- ☀ Первые абонентские устройства для работы в сетях связи LTE, Femto

Основные мировые тенденции

- Движущей силой дальнейшего развития мировой телекоммуникационной индустрии становится предоставление широкого спектра новых инфокоммуникационных услуг, их персонификация
- Информация (контент), передаваемая по сети, имеет большую ценность, чем доступ к самой сети. Основной потенциал развития отрасли находится в области контент-услуг
- Экстенсивное развитие телекоммуникаций завершено. Операторы открывают для себя новый сегмент бизнеса в области предоставления широкого спектра услуг передачи данных
- Конкурентоспособные и понятные тарифы, учитывающие потребности различных групп абонентов
- Широкий выбор терминалов, доступных по ценам и удобных в эксплуатации
- Отсутствие проблем с покрытием территории, наличие межсетевого и международного роуминга
- Абоненту важно получить высокоскоростные услуги с требуемым качеством по минимально возможной цене и ему все равно, к какой именно сети доступа в данный момент времени подключено его терминальное устройство

РОССИЙСКИЙ РЫНОК СОТОВОЙ СВЯЗИ

Степень проникновения сотовой связи ~ 94,5 %
Число зарегистрированных SIM-карт ~ 215 млн. (~150 %, в Москве ~200 %)
Три оператора ~ 82 % абонентской базы

СОВРЕМЕННЫЙ ЭТАП РАЗВИТИЯ РЫНКА ИНФОКОММУНИКАЦИЙ В РОССИИ

- Федеральные сети, концентрация капитала
- Инвестиции в инфраструктуру и зарубежные проекты
- Высокий уровень проникновения, насыщение
- Снижение тарифов, расширение спектра услуг, конкуренция
- Внедрение новых технологий, их конвергенция
- Экспоненциальный рост трафика передачи данных

ИНФОКОММУНИКАЦИИ: ТЕНДЕНЦИИ РАЗВИТИЯ

Широкополосный доступ

телефония

передача данных

цифровое интерактивное ТВ

TRIPLE (QUADRO) PLAY – комплексная услуга: один оператор, единый счёт

Интеграция операторов

Конвергенция сетей фиксированной и мобильной связи, беспроводного широкополосного доступа и телевещания

Конвергенция услуг

ЗАВТРА НАЧИНАЕТСЯ СЕГОДНЯ

Специализация участников рынка

возрастает количество поставщиков услуг, их роль в формировании доходов и степень независимости

Инфраструктурный уровень:

сети и каналы, транспорт, доступ – "последняя миля"

Либерализация рынка. Конкурентная среда. Усиление роли малого бизнеса в деле формирования контента, сервисов и пакетов инфокоммуникационных услуг. Рекомендации ЕС.

"Мягкое" регулирование со стороны государства. Учёт мнения участников рынка. Переход к саморегулированию

ЛИБЕРАЛИЗАЦИЯ РЫНКА: РЕКОМЕНДАЦИИ ЕС и МСЭ

Администрация связи		Участники рынка
(регулятор)		✓ операторы
Переход от жесткого регулирования к мягкому	\rightarrow	✓ производители
	\rightarrow	✓ поставщики услуг
	\rightarrow	✓ телерадиовещатели
	\rightarrow	 некоммерческие объединения
		✓ саморегулируемые организации

- объединение усилий в смягчении режима лицензирования частот, услуг, технологий, самостоятельный выбор технологий для построения сетей
- разработка НПА: FMC, NGN, MNP, WiMAX, LTE, мобильные платежи, рефарминг, фемто, цифровой дивиденд, повышение эффективности использования РЧС
- "жесткое" регулирование тарифов, в том числе на оказание услуг конечным потребителям и на присоединение

АКТУАЛЬНЫЕ ВОПРОСЫ ГОСУДАРСТВЕННОЙ ПОЛИТИКИ

- Повышение эффективности использования радиочастотного спектра
- Совершенствование порядка лицензирования и регистрации сетей
- Внедрение новых услуг и технологий
- Регулирование доступа к контенту и сетям (инфраструктуре)
- Совместное использование сетей, внедрение ВСПС, организация национального роуминга
- Переносимость абонентского номера, развитие универсальных услуг
- Развитие добросовестной конкуренции, выбор оператора МГ/МН, существенное положение в сети связи общего пользования.
- Регулирование тарифов, в т. ч. и на пропуск трафика между сетями
- Развитие мультисервисных сетей (ЕМСС РФ) и полностью IP-сетей
- Совершенствование правил нумерации, правил пропуска трафика между сетями, правил оказания услуг, управление ЕСЭ РФ

ЗАКОН «О СВЯЗИ», ИНФОКОММУНИКАЦИОННЫЙ КОДЕКС - ???

ЗАДАЧИ БЛИЖАЙШЕГО БУДУЩЕГО:

- Конвергенция технологий и услуг, взаимодополняющее развитие БШД, сотовой и фиксированной связи
- Предложения в области нормативно правового регулирования (FEMTO, MNO, FNO, ISP, LTE/SAE, MBB, FMC, FMS, MNP, MTV, ...)
- Повышение эффективности использования РЧС (конверсия, рефарминг, цифровой дивиденд, конкурсы и др.)
- Внедрение мобильных платежей, технология NFC
- Информационная безопасность, защита персональных данных
- Разработка проектов НПА в области построения мультисервисной системы связи Российской Федерации
- Совершенствование законодательства, формирование доктрины инфокоммуникационного права, внедрение новых услуг, подготовка условий для перехода к саморегулированию

ЧТО ДЕЛАТЬ?

РОССИЯ: EACC → BCC → ECЭ → ???

ИНИЦИАТИВА ИНФОКОММУНИКАЦИОННОГО СОЮЗА

«ПРИНЦИПЫ ПОСТРОЕНИЯ МУЛЬТИСЕРВИСНОЙ СИСТЕМЫ СВЯЗИ РФ»:

- Тенденции и задачи дальнейшего развития национальной инфраструктуры связи
- Факторы, сдерживающие миграцию существующих сетей к NGN
- Принципы построения и взаимодействия сетей, этапы развития
- Взаимодействие сетей связи при оказании услуг (наборов услуг) абонентам с использованием различных способов радиодоступа (GSM, WiFi, WiMAX и LTE)
- Рекомендации по совершенствованию отраслевой нормативно-правовой базы

Внедрение сетей связи LTE/SAE в России

НИР «COTA - MBB»: ОПЫТНАЯ ЗОНА LTE/SAE

Новые возможности и риски для участников рынка:

- радиочастотный ресурс
- межсетевое взаимодействие
- услуги, правила применения
- нормативно правовые акты

?

Потребительский спрос и размер рынка заранее неизвестен

- анализ зарубежного опыта
- учет российских особенностей
- исследования
- разработка предложений

ИНФОКОММУНИКАЦИОННЫЙ СОЮЗ МИНКОМСВЯЗИ РОССИИ

Решение о порядке лицензирования и принципах операторской деятельности в сетях LTE/SAE

Развертывание сетей связи LTE/SAE в России

Полосы частот для фрагментов опытной зоны сетей связи LTE в четырёх регионах Российской Федерации:

698...746 МГц

1,7...2,1 ГГц

790...862 МГц

2,3...2,4 ГГц

880...960 МГц

2,5...2,7 ГГц

ЗАЧЕМ ПОВЫШАТЬ ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ РЧС?

Экономическая эффективность:

- Дополнительные доходы в госбюджет, рост стоимости РЧС
- Развитие добросовестной конкуренции
- Инвестиционная привлекательность
- Сокращение затрат, рост ARPU

Техническая эффективность:

- Увеличение емкости и пропускной способности сетей
- Внедрение новых технологий
- Совместное использование РЧС

Функциональная эффективность:

- Расширение спектра услуг, их персонификация
- Быть на связи всегда и везде

В 2020 году потребность СПС в РЧС составит 1280...1720 МГц (сейчас ~ 550 МГц)

> Экономическое, социальное, культурное развитие общества

> > человеку,

Выгодно: обществу,

бизнесу,

государству

Повышение эффективности использования РЧС способствует внедрению новых технологий и наоборот!

МЕТОДЫ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ РЧС

Административные методы:

- Совершенствование системы государственного управления РЧС
- Единый государственный орган управления РЧС
- Конверсия РЧС

Экономические методы управления использованием РЧС >> :

- Конкурсы и аукционы
- Лицензионные условия
- Технологическая нейтральность
- Стоимость РЧС и плата за его использование

Организационно-технические методы:

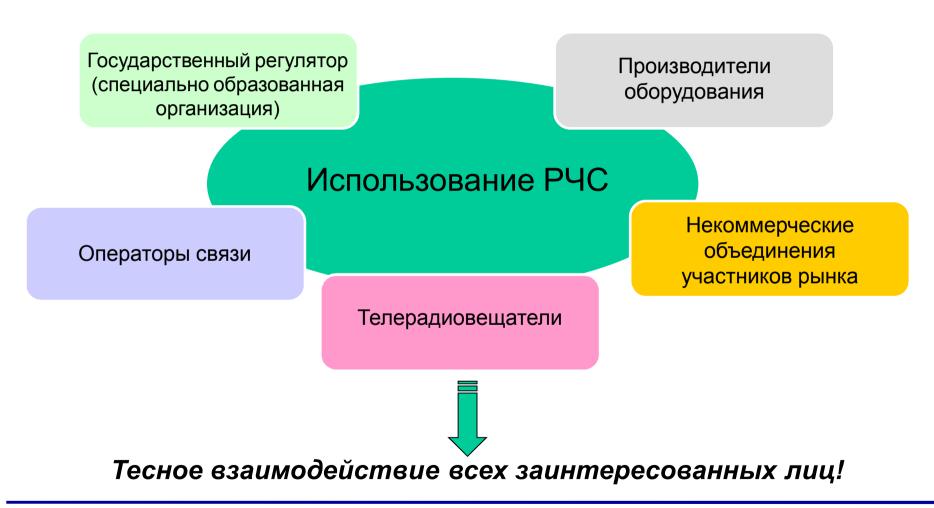
- Внедрение и взаимодополнение новых технологий (IMT, ФЕМТО, HAPS, MIMO, ВТСП)
- Совместное использование сетей, внедрение ВСПС, расширение спектра услуг
- Расширение нелицензируемых полос радиочастот
- Динамическое распределение РЧС (SDR, CR,...)

ТЕНДЕНЦИИ В ОБЛАСТИ УПРАВЛЕНИЯ РЧС:

ГАРМОНИЗАЦИЯ:

- единое распределение РЧС
- жесткая привязка к технологиям
- административные методы
- ограниченное число технологий

ЛИБЕРАЛИЗАЦИЯ:


- гибкость в распределении РЧС
- технологическая нейтральность
- экономические методы
- множество новых технологий

Конверсия РЧС

ДИНАМИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ:

- общий радиочастотный ресурс
- интегрированная система связи
- отсутствие фиксированного распределения радиочастот
- выделение радиочастот, не занятых другими в данном месте и в данное время, по запросу

Управление РЧС в развитых странах

ЭКОНОМИЧЕСКИЕ МЕТОДЫ – КАКОЙ ЭФФЕКТ?

Изжить косный подход прошлых лет. Задача – обеспечить владельцам радиочастот свободу в выборе технологий и услуг. Свобода должна превратиться в твердую реальность.

Комиссар ЕС В. Рединг

- EC: новые принципы управления РЧС, свобода выбора технологий и оказываемых услуг (модель WAPECS)
- Специализированные организации для управления РЧС (ОFCOM)
- Внедрение принципа "нейтральности технологий и услуг" >> (США, Франция, Великобритания, Австралия, Новая Зеландия)
- > Рыночная стоимость РЧС, платная основа его использования, аукционы
- Права на радиочастоты можно переуступать, продавать и сдавать в лизинг (Германия, Великобритания, Австралия, Новая Зеландия)
- У Консультации, аукционы, условия лицензий (Норвегия, Швеция: 2,6 ГГц; США: 100 операторов , 1 000 лицензий, ~ 20 млрд.\$ Digital Dividend)

4-я Европейская конференция по управлению РЧС 16-17 июня 2009 года, Брюссель

- Применение рыночных моделей в распределении РЧС
- РЧС мощный инструмент оздоровления мировой экономики
- Конкурсы и аукционы позволяют государству получить значительные финансовые средства
- Технологии становятся социально ориентированными и персонифицированными
- Облегченный доступ к использованию РЧС
- Внедрение контрольных критериев ценообразования
- Торговля РЧС на вторичном рынке
- Возможности безлицензионного использования РЧС
- Социальная и экономическая значимость цифрового дивиденда
- Конверсия и рефарминг РЧС

АНАЛИЗ РОССИЙСКОЙ СИСТЕМЫ УПРАВЛЕНИЯ РЧС

- Ведомственный характер системы управления РЧС, административные подходы, отсутствие общественного контроля
- Отсутствие государственной политики в области повышения эффективности использования РЧС, отсутствие экономических (рыночных) методов
- Отсутствие единой государственной радиочастотной службы, ее непрозрачность и разобщенность
- Теоретический характер конверсии РЧС, госбюджет
- Отсутствие контроля за ходом конверсии и результатов
- Непрозрачность назначения радиочастот, отсутствие инвентаризации и неравномерная загруженность РЧС
- Административный, устаревший подход к плате за РЧС

- социально экономического развития
- •преодоления цифрового разрыва
- •внедрения новых технологий и услуг
- развития рынка инфокоммуникаций

В России до сих пор отсутствует базовый закон прямого действия об использования РЧС

ПЛАТА ЗА ИСПОЛЬЗОВАНИЕ РЧС В РОССИИ

- Постановление Правительства РФ (02.06.1998) затратный подход к определению платы
- Ориентировочная стоимость конверсии РЧС ~ 58 млрд. руб. (И.О.Щёголев)
- Финансирование «теоретической» конверсии РЧС из госбюджета неэффективно
- Какова стоимость РЧР в России?
- В большинстве развитых стран использование РЧС платное для всех пользователей
- В Канаде после введения платы военные освободили 75% занимаемых радиочастот

Плата за РЧС – мера воздействия на тех, кто использует РЧС неэффективно

"Если ресурсом обладаешь, но не используешь – плати либо отдай"

Президент Российской Федерации Д.А. Медведев

АКТУАЛЬНЫЕ ЗАДАЧИ: ЧТО ДЕЛАТЬ?

- ✓ Разработка и принятие базового закона прямого действия «Об использовании РЧС в РФ» >
- ✓ Создание независимого регулирующего органа, ответственного за использование РЧС
- ✓ Создание единой государственной системы управления РЧС (радиочастотной службы)
- ✓ Либерализация системы управления РЧС, технологическая нейтральность, учет мнения рынка (НКО)
- ✓ Внедрение экономических методов управления РЧС, аукционы и конкурсы, плата за РЧС
- ✓ Разработка государственной политики повышения стоимости и эффективности использования РЧС
- ✓ Инвентаризация и конверсия РЧС в интересах социально—экономического развития страны
- ✓ Разработка плана (концепции) перспективного использования РЧС после 2012 года с учетом внедрения и конвергенции новых технологий и услуг
- ✓ Разработка и внедрение прозрачных и открытых процедур распределения и использования РЧС в интересах развития добросовестной конкуренции, определение порядка общественного контроля
- ✓ Разработка новых и уточнение существующих методик расчета ЭМС РЭС различного назначения, создание единой базы данных о назначениях радиочастот

ЗАКОНОПРОЕКТ «ОБ ИСПОЛЬЗОВАНИИ РЧС В РФ»

Рабочая группа при Комиссии Совета Федерации по естественным монополиям

КОНЦЕПЦИЯ федерального закона

«Об использовании радиочастотного спектра в РФ»

- Базовый закон прямого действия: РЧС ограниченный ресурс и достояние всего общества
- Конверсия РЧС (в перспективе не менее 50% РЧС для РЭС гражданского назначения)
- Единый государственный орган по управлению РЧС при Правительстве РФ
- Создание единой государственной радиочастотной службы
- Частичная децентрализация процессов управления РЧС
- Внедрение экономических методов управления РЧС, плата за использование РЧС

ЗАДАЧИ ПО РАЗВИТИЮ ИНФОРМАЦИОННОГО ОБЩЕСТВА НА ПЕРИОД ДО 2015 ГОДА

- Повышение качества инфокоммуникационных и услуг, расширение их доступности для населения
- Создание условий для ускоренного внедрения перспективных технологий и услуг
- Внедрение информационных технологий в социальную сферу
- Создание конкурентной среды, обеспечение недискриминационного доступа к ресурсам сети связи
- Повышение эффективности использования и конверсия РЧС
- Модернизация инфраструктуры связи

Выводы

- Новые услуги и технологии развивают экономику России, обеспечивают ее конкурентоспособность и способствуют вовлечению населения в мировое информационное пространство, что является важной политической задачей государства. Широкое внедрение новых услуг и технологий возможно только на основе повышения эффективности использования радиочастотного спектра.
- Дальнейшее повышение спектральной эффективности ССС может быть достигнуто применением интеллектуальных антенных систем, обеспечивающих многолучевый режим работы с учетом параметров радиотрасс, расположения пользователей в пространстве и требований по обеспечению качества услуг передачи данных.
- Максимальная спектральная эффективность ССС МІМО достигается в случае, когда ДН антенн являются «собственными» ДН» соответствующих каналов и только при большом отношении сигнал/помеха на входе приемного устройства.