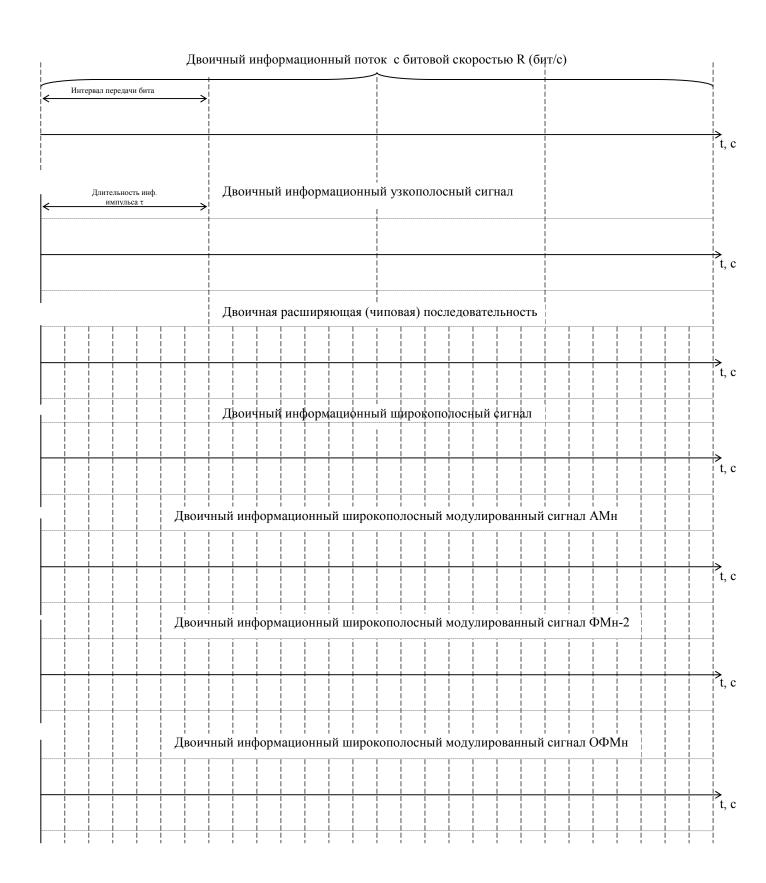
Обязательное задание к практической работе №6 "Полосовая модуляция и методы расширения спектра двоичных сигналов" $zpynna\ 14-501$

Исходные данные:


Информационная двоичная последовательность длиной 4 бита, чиповая 7-разрядная двоичная последовательность.

Для выполнения задания необходимо:

- 1. Представить информационную двоичную 4-битовую последовательность в виде сигнала, представленного в биполярной кодировке NRZ (логическая единица соответствует импульсу положительной полярности, а логический ноль импульсу отрицательной полярности)
- 2. Представить чиповую 7-битную последовательность в виде сигнала, также представленного в биполярной кодировке NRZ (длительность всей чиповой последовательности должна соответствовать длительности информационного импульса)
- 3. Показать, как будет выглядеть широкополосный видеосигнал (чиповый сигнал, промодулированный информационным сигналом)
- 4. Представить сигнал, полученный в п.3 в виде амплитудно-манипулированного радиосигнала
- 5. Выбрать любую разницу фаз (180°, 90°, 45° и т.п.) для представления радиоимпульсов, соответствующих логическому нулю и логической единице и представить сигнал, полученный в п.3 в виде фазо-манипулированного радиосигнала
- 6. Согласно выбранной в п.5 разнице фаз, представить сигнал, полученный в п.3 в виде радиосигнала, представленного в относительной фазовой манипуляции.

Варианты задания:

ианты задания:		
№ варианта	Информационная двоичная последовательность	Чиповая двоичная последовательность
1.	0101	0100111
2.	0110	1110100
3.	0111	1101001
4.	1000	0100111
5.	1000	1010011
6.	0011	0011101
7.	0100	0111010
8.	0101	1001110
9.	0001	1010011
10.	0010	1001110
11.	1101	1101001
12.	1110	1101001
13.	1111	1010011
14.	0110	0011101
15.	0111	0111010
16.	1001	1001110
17.	1010	0011101
18.	1011	0111010
19.	1100	1110100
20.	1001	0100111

